

Welcome to Django Web Exceptions’s documentation!

Contents:

	Django Web Exceptions
	What and why?

	Documentation

	Quickstart

	Features

	Running Tests

	Credits

	Installation

	Usage
	Configure

	Simple usage

	Customize response

	List of available exceptions

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.4 (2017-05-28)

	0.1.3 (2017-05-15)

	0.1.2 (2017-05-15)

	0.1.1 (2017-05-13)

	0.1.0 (2017-05-13)

Django Web Exceptions

[image: https://badge.fury.io/py/django-web-exceptions.svg]
 [https://badge.fury.io/py/django-web-exceptions][image: https://travis-ci.org/samael500/web-exceptions.svg?branch=master]
 [https://travis-ci.org/samael500/web-exceptions][image: https://codecov.io/gh/samael500/web-exceptions/branch/master/graph/badge.svg]
 [https://codecov.io/gh/samael500/web-exceptions][image: Documentation Status]
 [http://web-exceptions.readthedocs.io/en/latest/readme.html]Throwing web exceptions like in AioHTTP

What and why?

In AioHTTP [https://github.com/aio-libs/aiohttp] you can raise any response as exception (this is very cool).
But Django can raise only 3+1 web exceptions.

	400 SuspiciousOperation [https://docs.djangoproject.com/en/1.11/ref/exceptions/#suspiciousoperation]

	403 PermissionDenied [https://docs.djangoproject.com/en/1.11/ref/exceptions/#permissiondenied]

	404 Http404 [https://docs.djangoproject.com/en/1.11/topics/http/views/#the-http404-exception]

	500 Any other non catched exception

This package allow you to raise as exception any of HTTP response.

Documentation

The full documentation is at https://web-exceptions.readthedocs.io.

Quickstart

Install Django Web Exceptions:

pip install django-web-exceptions

Add it to your MIDDLEWARE:

settings.py
MIDDLEWARE = (
 # ...
 'web_exceptions.middleware.WebExceptionsMiddleware',
 # ...
)

Features

Import exceptions and raise anywhere

views.py
from web_exceptions import exceptions

...

def index(request):
 """ Simple view raise redirectexception """
 raise exceptions.HTTPMovedPermanently('/foo')

Also you can customize any kind of exception status code as custom handler,
defined in urls.py like django error handlers [https://docs.djangoproject.com/en/1.11/topics/http/views/#customizing-error-views] .

urls.py
from myapp import views

handler300 = <callable view>
handler400 = <callable view>
handler<status_code> = <callable view>

For more example see example proj [https://github.com/samael500/web-exceptions/tree/master/example]

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install tox
(myenv) $ tox

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

Install with pip:

$ pip install web-exceptions

Usage

Configure

To use Django Web Exceptions in a project, add it to your MIDDLEWARE settings:

settings.py
MIDDLEWARE = [
 ...
 # add middleware for dj exceptions
 'web_exceptions.middleware.WebExceptionsMiddleware',
 ...
]

Simple usage

Import and raise Web Exceptions’s:

from web_exceptions import exceptions

...

raise exceptions.HTTPOk(
 content="Thist is Http Ok response",
 headers={'X-Extra-Header': 'some value'})

Customize response

Self http exception

Declare custom web exception:

from web_exceptions import exceptions

class HTTPTeapot(exceptions.HTTPClientError):
 status_code = 418
 reason = "I'm a teapot"

...

raise HTTPTeapot()

Self response handler

Also you can customize any kind of exception status code as custom handler,
defined in urls.py like django error handlers [https://docs.djangoproject.com/en/1.11/topics/http/views/#customizing-error-views].

urls.py
from myapp import views

handler300 = <callable view>
handler400 = <callable view>
handler<status_code> = <callable view>

List of available exceptions

200x status code

	200 HTTPOk

	201 HTTPCreated

	202 HTTPAccepted

	203 HTTPNonAuthoritativeInformation

	204 HTTPNoContent

	205 HTTPResetContent

	206 HTTPPartialContent

300x status code

	300 HTTPMultipleChoices

	301 HTTPMovedPermanently

	302 HTTPFound

	303 HTTPSeeOther

	304 HTTPNotModified

	305 HTTPUseProxy

	307 HTTPTemporaryRedirect

	308 HTTPPermanentRedirect

400x status code

	400 HTTPBadRequest

	401 HTTPUnauthorized

	402 HTTPPaymentRequired

	403 HTTPForbidden

	404 HTTPNotFound

	405 HTTPMethodNotAllowed

	406 HTTPNotAcceptable

	407 HTTPProxyAuthenticationRequired

	408 HTTPRequestTimeout

	409 HTTPConflict

	410 HTTPGone

	411 HTTPLengthRequired

	412 HTTPPreconditionFailed

	413 HTTPRequestEntityTooLarge

	414 HTTPRequestURITooLong

	415 HTTPUnsupportedMediaType

	416 HTTPRequestRangeNotSatisfiable

	417 HTTPExpectationFailed

	421 HTTPMisdirectedRequest

	426 HTTPUpgradeRequired

	428 HTTPPreconditionRequired

	429 HTTPTooManyRequests

	431 HTTPRequestHeaderFieldsTooLarge

	451 HTTPUnavailableForLegalReasons

500x status code

	500 HTTPInternalServerError

	501 HTTPNotImplemented

	502 HTTPBadGateway

	503 HTTPServiceUnavailable

	504 HTTPGatewayTimeout

	505 HTTPVersionNotSupported

	506 HTTPVariantAlsoNegotiates

	510 HTTPNotExtended

	511 HTTPNetworkAuthenticationRequired

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/samael500/web-exceptions/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Web Exceptions could always use more documentation, whether as part of the
official Django Web Exceptions docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/samael500/web-exceptions/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up web-exceptions for local development.

	Fork the web-exceptions repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/web-exceptions.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv web-exceptions
$ cd web-exceptions/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 web_exceptions tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/samael500/web-exceptions/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_web_exceptions

Credits

Development Lead

	Maks Skorokhod <samael500@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.4 (2017-05-28)

	Set custom reason phrase for exception response.

	Add docs.

0.1.3 (2017-05-15)

	Fix pypi wrong upload issue.

0.1.2 (2017-05-15)

	Clean source code from unused rows.

0.1.1 (2017-05-13)

	Small fixes in source code and readme.

0.1.0 (2017-05-13)

	First release on PyPI.

 Python Module Index

 w

 		 	

 		
 w	

 	
 	
 web_exceptions	

Index

 W

W

 	
 	web_exceptions (module)

web_exceptions

	web_exceptions package
	Submodules

	web_exceptions.exceptions module

	web_exceptions.middleware module

	Module contents

web_exceptions package

Submodules

web_exceptions.exceptions module

web_exceptions.middleware module

Module contents

 _static/comment-close.png

_static/comment-bright.png

_static/comment.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to Django Web Exceptions's documentation!

 		Django Web Exceptions

 		What and why?

 		Documentation

 		Quickstart

 		Features

 		Running Tests

 		Credits

 		Installation

 		Usage

 		Configure

 		Simple usage

 		Customize response

 		Self http exception

 		Self response handler

 		List of available exceptions

 		200x status code

 		300x status code

 		400x status code

 		500x status code

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.4 (2017-05-28)

 		0.1.3 (2017-05-15)

 		0.1.2 (2017-05-15)

 		0.1.1 (2017-05-13)

 		0.1.0 (2017-05-13)

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

